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Load-Compression Behavior of Brittle Foams 

K. C .  RUSCH, Xcienti$c Research Xtaf,  
Ford Motor Co., Dearborn, Michigan 48121 

Synopsis 
Quantitative relationships between the load-compression behavior and the physical 

characteristics of the foam matrix, previously reported for flexible systems, have now 
been extended to brittle foams. The shape of the compression curve is expressed in 
terms of fi(~), a dimensionless function of the compressive strain, while the stiffness, or 
load-bearing capacity, is defined by El, the apparent Young's modulus. Because the 
brittle matrix breaks-rather than flexes-when compressed, a brittle foam exhibits a 
flatter and wider plateau in the load-compression curve than a rigid (but ductile) foam 
of equivalent density, cell geometry, and Ej.  These differences are expressed quanti- 
tatively by + ( t ) .  It is important to distinguish between brittle foams and rigid, but 
ductile, foams. Since both types may exhibit the same stiffness, this distinction, par- 
ticularly significant in energy absorbing applications, often is not considered in designing 
foam structures. Using the relationships established in this report, it is now possible to 
delineate precisely the characteristics a brittle foam must possess to meet a given 
load-compression specification. 

INTRODUCTION 

The load-compression behavior of a foamed polymer, important for 
design and performance characteristics of a foam, is dependent upon the 
geometric structure and physical properties of the matrix polymer. To 
specify the optimum foam for a given application, it is important to under- 
stand, in a quantitative manner, the relationship between compressive 
stress and the physical characteristics of the matrix. It was demonstrated 
previously' that the compressive stress, u, can be factored into the product 
of (1) a dimensionless function of the compressive strain, +(e), and (2) 
a factor eE,, where a is the compressive strain and E ,  the apparent Young's 
modulus of the foam. This is expressed as follows: 

u = eEj+(e). (1) 

The foam modulus, E ,  is a function primarily of Young's modulus 
of the matrix polymer, Eo, and volume fraction of polymer, ( P : ~  

EdEo = [ ( ~ ( 2  + 7~ + 3p2) 1/12 (2) 

Experimental compression data for several flexible polyurethane foams 
demonstrated' that +(E) is highly sensitive to the specific details of the 
matrix geometry, only moderately dependent on density or cell size, and 
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independent of Eo (and hence independent of temperature or strain rate). 
In this report, the analysis of compression behavior is extended to other 
foam systems, with particular emphasis placed on the influence of matrix 
brittleness on $ ( E ) .  

The function #(B) reflects the load-bearing capacity of the collapsed 
matrix and hence must depend on the strength and brittleness of the 
matrix. A brittle matrix is broken, rather than flexed, during compression, 
leading to a load-compression curve with a flatter and wider plateau than 
that characteristic of a flexible matrix with a similar geometric structure. 
The magnitude of the influence of matrix brittleness on compressive be- 
havior, however, has never been evaluated quantitatively. 

In this report, $(B) is calculated from experimental load-compression 
curves for several rigid (brittle) polyurethane foams, and compared to that 
calculated from data for flexible polyurethane foams of similar matrix 
geometry; $(E) also is calculated from compression data for ABS, phenolic, 
polyethylene, and polystyrene foams. The critical features of $(B) will 
be shown to vary in a regular manner, reflecting the geometric and physical 
properties of the matrix polymer. 

EXPERIMENTAL 
Rigid polyurethane foams generally possess a different matrix geometry 

than flexible polyurethane foams because of differences in the foaming 
reaction. To evaluate the influence of matrix brittleness without altering 
matrix geometry, several polyurethane foams (flexible a t  25°C) (Mobay 
Chemical Company and Scott Paper Company) were compressed at  - 196' 
(immersed in liquid nitrogen), a temperature a t  which the matrix is brittle, 
and the data were compared to those obtained at  25°C. Load-compression 

TABLE I 
Physical Characteristics of Polyurethane Foams 

Sam- 
ple 

Ef ,  Psi 

Type +25"C -60°C -196°C a 

Cell size, in. 

av. 95% range 

B 
C 
D 
E 
F 
G 
H 
L 
M 
N 
Q 

IQ 77. - 
I 25. 350. 
I 11.5 150. 
I 4.5 105. 
I 3.5 89. 
IIb 15. 380. 
I1 9.0 220. 

1110 18. 400. 
I11 14. 280. 
I11 9.4 210. 
I11 11. 320. 

- 
1500. 
770. 
400. 
350. 
750. 
530. 
450. 
400. 
280. 
660. 

0.24 
0.11 
0.065 
0.043 
0.037 
0.033 
0.028 
0.028 
0.028 
0.028 
0.032 

0.007 
0.012 
0.020 
0.022 
0.025 
0.020 
0.013 
0.10 
0.050 
0.035 
0.012 

0.001-0.02 
0.003-0.03 
0.007-0.05 
0.00&0.06 
0.01-0.06 
0.01-0.04 
0.005-0.025 
0.04-0.2 
0.02-0.1 
0.01-0.08 
0.005-0.02 

a Normal polyurethane foam with an irregular cell structure. 
b Normal polyurethane foam with a highly regular cell structure. 
0 Reticulated polyurethane foam with a regular cell structure. 
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data also were obtained a t  -6O”C, an intermediate temperature at  which 
the matrix is “rigid” but still ductile. Table I summarizes the physical 
characteristics of these foams. The compression data at  25”C, together 
with photomicrographs showing the differences in cell structure, were re- 
ported previously, and the foam-sample designations in Table I correspond 
to those used in the earlier article.’ 

Compression data also were obtained for a series of rigid (at room tem- 
perature) polyurethane foams (Mobay Chemical Company) varying in 
density from cp = 0.037 to 0.79 and several other rigid foams of varying 
matrix characteristics (Table 11). The foams examined were (1) high- 
density ABS (acrylonitrile-butadiene-styrene) from expandable beads 
(Marbon Chemical Company), (2) low-density polystyrene from expand- 
able beads (Sinclair-Koppers Company), (3) low-density polyethylene 
extruded sheet (Dow Chemical Company), and (4) low-density phenolic 
(Union Carbide Company). 

Rigid foams are frequently completely closed cell (cells not intercon- 
nected). Air is unable to escape from these closed cells and is compressed 
as the foam matrix is compressed. The contribution of entrapped air to 
the compressive stress can be approximated by modifying eq. (1) : 

(r = €E&(€) + Pf€/(l - cp - E) (3) 

where P is the atmospheric pressure and f, the volume fraction of closed 
cells. The latter term in eq. (3) is negligible if (1) the stiffness of the 
matrix is much greater than the apparent stiffness of the compressed air 
(E ,  >> P ) ,  (2) the foam is open cell df = 0) ,  or (3) the matrix is very brittle, 
such that the closed cells are broken during compression (releasing trapped 
air). The contribution of compressed air is most significant for a material 

TABLE I1 
Physical Characteristics of Rigid Foams 

Av. cell size, 
Sample Type Ef 1 Psi P in. 

S 
T 
U 
V 
W 
x 
Y 
Z 
AA 
BB 
cc 
DD 
EE 
FF 
GG 

Polyurethane 
Polyurethane 
Polyurethane 
Polyurethane 
Polyurethane 
Polyurethane 
Polyurethane 
Polystyrene 
Polyethylene 
Polyethylene 
Polyethylene 
ABS 
ABS 
ABS 
Phenolic 

740 
1,100 
3,800 

17,500 
32,000 
56,000 

140,000 
370 
110 
250 

1,200 
42,000 
56,000 
80,000 

1,050 

0.037 
0.078 
0.13 
0.30 
0.41 
0.54 
0.79 
0.020 
0.033 
0.054 
0.13 
0.44 
0.51 
0.62 
0.032 

0.020 
0.015 
0.010 
0.010 
0.008 
0.006 
0.005 
0.003 
0.040 
0.030 
0.025 
0.006 
0.005 
0.005 
0.003 
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such as low-density polyethylene foam where the matrix is ductile, Ef = 
P, and f = 1. 

The function $(e) is slightly dependent on the bulk dimensions of the 
foam test piece. In  the present work, the test pieces measured 2 X 2 X 
2 in., 2 X 4 X 4 in. (compressed in the 2-in. direction), and 4 X 2 X 2 in. 
(compressed in the 4-in. direction). The h/w ratio, where h and w are the 
dimensions parallel and perpendicular, respectively, to the compression 
direction, is indicated for all data. 

Unless noted otherwise, the compression data presented were obtained 
at room temperature and a linear strain rate of about 0.5~o/sec; the data 
are characteristic of the first compression only. 

For the rigid polyurethane foams (samples S through Y), Ef was measured 
in tension and compression. The values were similar in all cases, confirm- 
ing the linearity of the stress-strain curve through e = 0. An identical 
result was reported previously' for flexible foams. 

RESULTS AND DISCUSSION 

Effect of Matrix Brittleness on $(e) 

As a foam is compressed to small strains, the struts comprising the 
matrix bend and compress in an elastic manner (t,b(e) = 1.0). Then, at 
some characteristic Compression, the matrix structure begins to buckle, 
or collapse, and $(e) starts to decrease. The strain at  $(e) = 0.95 has 
been defined' the "critical buckling strain," eo. The point at which the 
struts buckle and the load-bearing capacity of the collapsed structure are 
dependent on the flexural strength and ductility of the struts. If a por- 
tion of the matrix structure breaks brittlely, the compressed structure will 
support a lower load than an equivalent structure which does not fracture 
during compression. This effect is reflected in the shape of the $(E) 

function. 
Earlier work' demonstrated that $(e) is independent of E,, the modulus 

of the matrix polymer; and, in the absence of a ductile-brittle transition, 
$(e) thus is independent of temperature. The influence of changes in 
matrix brittleness on $(e) is presented in Figures 14, which show the 
$(e) functions calculated from compression data obtained at  25", -60", 
and -196°C for the polyurethane foams listed in Table I. These foams 
are flexible at  25°C (exhibit 1 0 0 ~ o  recovery after compression), partially 
flexible at -60' (exhibit about 50% to 80% recovery), and brittle at 
- 196°C (exhibit negligible recovery). The changes in $(e) accompanying 
the decrease in temperature are qualitatively similar in all cases and are 
attributed to increased matrix brittleness only. 

The decrease in $ ( ~ ) ~ i ~  (minimum value) and the increase in e at 
are clearly related to increased matrix fracture during compression. The 
point at which no further collapse of the matrix is possible, because of 
lateral matrix constraints (perpendicular to applied stress), is represented 
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Fig. 1. Dependence of +(e) on matrix brittleness for several Type-I polyurethane foams 
(h/w = '/z). 

by If the degree of matrix fracture is increased, the lateral con- 
straints at  large compressions become relatively less significant and the 
load-bearing capacity is decreased. Thus, increasing matrix brittleness 
leads to a wider and flatter plateau in the load-compression curve. 

Since the qualitative effects of matrix brittleness are the same for all 
of these polyurethane foams, it can be inferred that the relationships be- 
tween load-compression behavior and physical characteristics of the ma- 
trix are qualitatively the same for brittle foams as those established previ- 
ously for flexible foams.' That is, $(E) for a brittle foam should be highly 
sensitive to the details of the matrix geometry, only moderately dependent 
o n  density or cell size, and independent of Eo (within the region of brittle 
behavior). 

Density Dependence of $(e) 

Figures 1 and 5 compare $(e) for four type-I polyurethane foams varying 
in density from p = 0.037 to 0.11. For brittle foams, as in the case of 
flexible foams, the dependence of $(e) on cp is relatively small. This is 
confirmed by the data in Figure 6, where $(e) is shown for a series of rigid 
polyurethane foams (Table 11) of similar cell geometry. Increasing p 
from 0.037 to 0.79 only doubles $(e),i,, while E,  (and hence the compres- 
sive stress) increases by a factor of 190. For this particular set of data 
(Fig. 6), the following proportionality can be written: 

$(e)min P ~ . ~ ~ -  (4) 
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Fig. 2. Dependence of $(c) on matrix brittleness for two low-density type-I1 poly- 
urethane foams (h/w = l/z). 

Fig. 3. 
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Dependence of $(c) on matrix brittleness for two low-density 
urethane foam (h/w = 1/2). 
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1.0 
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0.3 

0.1 

In the case of flexible polyurethane foams,' #(e) approaches unity as e 

approaches (1 - cp). This is not observed for brittle foams (Fig. S), 
where #(e) is still much less than unity a t  e = (1 - cp). The low values 
of #(e) at large compressions (brittle foams) reflect brittle fracture of the 
matrix. 

Since changes in #(e) are small compared to those in En the stress re- 
quired to compress a rigid foam to some given strain, €*, relative to that 

- - - - - 
- 
- 

- 

- 196 "C 
I I  I I I I I l l  I 1  I I l l l l L  

Fig. 4. 

Foam Sample 0 

0.01 0.03 0.1 0.3 1.0 
E 

Dependence of $(c) on matrix brittleness for two low-density 
urethane foams ( h / w  = 1/2). 

type-111 POlY- 

Fig. 5. Dependence of $(e) on volume fraction of polymer for brittle type-I polyurethane 
foams (h/w = I/*). 
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E 

Fig. 6. Dependence of $(e) on volume fraction of polymer for several rigid polyurethane 
foams (h/w = 1). 

required to compress another similar foam, is approximately equal to the 
ratio of moduli : 

4 € * > 1 / 4 € * > 2  = (E,)l/(E,)2. (5)  
This relationship is valid a t  any value of e, provided the foams are of 
similar matrix geometry. The compressive stress, or load-bearing capacity, 
generally is related to density rather than E,. But it is important to 
remember that u(e*) can be related to cp only if Eu is assumed constant 
and cell geometry changes are small. 

The density dependence of compressive strength frequently is expressed 
in the form3.* 

a(€*) 0: $90 (6) 
where b is a constant. 
in eq. (5). 

The value of b can be calculated by inserting eq. (2) 
In the range cp = 0.08 to 0.5, eq. (2) is approximated by 

E j/Eo 0.70 cp1.5. (7) 
Therefore we obtain b = 1.5; values between 1.4 and 1.6 have been re- 
ported forb in this density range.3p4 

Dependence of #(e) on Matrix Geometry 

The influence of the average cell-size, d, on $(e) for a series of reticulated 
polyurethane foams (d = 0.012 to 0.10) is shown in Figures 3, 4, and 7. 
The general effect of increasing d is to decrease and to accentuate 
the maximum in the load-compression curve in the vicinity of 5 ~ 0 - 1 0 ~ 0  
compression. The relative position of #(e) for sample N, however, indi- 
cates that other geometric features of the matrix, such as cell-size dis- 
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Fig. 7. Dependence of $(E) on average cell size for brittle, low-density, type-I11 poly- 
urethane foams (h /w  = l/z). 

Fig. 8. Dependence of $ ( E )  on matrix geometry for brittle, low-density polyurethane 
foams (h/w = l/~). For sample S, $ ( E )  was calculated from data at 25"C, at which tem- 
perature the foam is rigid; it is assumed that $(e) at 25°C is essentially identical to that 
at -196°C. 

tribution, may be much more significant than d in determining J . ( e ) .  The 
geometric structure of the matrix is difficult to describe quantitatively, 
but can be defined qualitatively in terms of a comparison to a matrix of 
known geometry. The marked influence of the details of the matrix 
geometry on J . ( e )  is further demonstrated (Fig. 8) when #(c) is compared 
for rigid polyurethane foams of similar density (q = 0.03) and cell size 
(d = 0.01 in.) but different cell structure. Photomicrographs showing the 
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differences in cell structure between samples F, and H, and Q have been 
published previously. 

While $(E) is highly dependent on matrix geometry, the ratio E,/Eo is 
rather insensitive to geometry and depends primarily on cp, eq. (2). There- 
fore, if the shape of the load-compression curve is unacceptable for a 

I Sample U 
, io.13 

I I I 1 1 1 1 1 1  

- - h/w = 1/2 
- h/w = I 

h / w  = 2 

h / w = 1 / 2  
h / w =  I 

S k )  h / w =  2 
0.3 - 

- 

- 
Foam Sample Y + =  0.79 - 

I .O 

1.0 - 

- 

Foam Sample W 

o,l - + =0.41 

0.01 0.03 0. I 03 1.0 0.03 0. I 0.3 
€ E 

Fig. 9. Dependence of $(e) on h /w  for several rigid polyurethane foams. 

Foam Sample D 

I I I I I I l l 1  I I I I I I I I L  
0.01 003 0. I 03 1.0 

Fig. 10. Dependence of +(e) on h/w for several flexible polyurethane foams. 
c 
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Fig. 11. Approximate +(e) functions for low-density polyethylene and polystyrene 
The volume fraction of closed cells, f, is foams (h/w = 1) calculated from eq. (3). 

assumed independent of compression. 

particular application, the matrix geometry must be altered; but if the 
shape is acceptable while the stiffness is not, then cp or EO must be altered. 

Influence of h/w Ratio on $(E) 

As the foam is compressed, lateral constraints-contribution to com- 
pressive stress resulting from deformation (bulging) perpendicular to 
applied stress-become increasingly more significant. Qualitatively, these 
lateral constraints would be expected to increase as h/w decreases, analo- 
gous to the uniaxial compression of a solid rubber block.s This is reflected 
as an increase in An experimental 
evaluation of the influence of h/w on $(E) (h/w = 1, and 2) is presented 
in Figure 9 for four rigid polyurethane foams varying in density from 
cp = 0.037 to 0.79, and in Figure 10 for two flexible polyurethane foams 
with cp = 0.065 and 0.24. The flexible and low-density rigid foams exhibit 
a smaller dependence on h/w, $(E)min decreasing only about 15y0 as h/w 
is increased from '/z to 2, than the high-density rigid foams. This differ- 
ence is a result of the brittleness of the matrix. A high-density ABS foam 
( c p  = 0.51), which has a ductile marix, exhibited less than a 10% de- 
crease in 

and a decrease in E at 

as h / w  was increased from 1 to 2. 
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Other Rigid Foams 

Although data presented thus far have been for polyurethane foams only, 
the conclusions reached should be valid for any foamed material. Figure 
11 shows $(e) functions for three polyethylenefoams ( c p  = 0.033, 0.054, 
and 0.13) and a polystyrene foam ( c p  = 0.020). For these, the contribution 
of entrapped air to compressive stress is significant, and $(e) was calculated 
from eq. (3), assuming f = 0.5, 0.8, and 0.95. This separation of the con- 
tributions from compressed air and matrix geometry is only approximate, 
however, since f continually decreases during compression because of rup- 
ture of the closed cells. The curves for f = 0.5 are considered representa- 
tive of an open-cell matrix of equivalent geometry. Figure 12 shows $(e) 
for a low-density phenolic foam; because of the brittle matrix, entrapped 
air does not contribute to the compressive stress of this foam. The very 
low eb and $(€),,,in observed for phenolic foams reflect the highly brittle 
character of the phenolic matrix. 

The $(e) functions for three high-density ABS foams ( c p  = 0.44, 0.51, 
and 0.62) are shown in Figure 12. These tend to resemble the $ ( E )  func- 
tions obtained for flexible' rather than brittle high-density polyurethane 
foams. Particularly, $(e) approaches unity as e approaches (1 - cp) ,  indi- 
cating that the matrix is not breaking brittlely during compression, al- 
though it is permanently deformed. An ABS foam will exhibit a narrower 
and steeper plateau in the load-compression curve than a brittle foam (such 
as polyurethane) of equivalent cp and Eo. Comparing ABS and brittle 
polyurethane foams of identical density and compressive modulus, the 
ABS foam will possess a higher compressive strength (for example, at  25y0 
compression), but the polyurethane foam will display superior energy- 

I .o 

S ( E )  
0.3 

0. I 

0.0 I 0.03 0. I 0.3 I .o 
6 

Fig. 12. Dependence of $(e) on matrix geometry for ABS and phenolic foams (h/w = 1). 
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0.0 I 0.03 0. I 0 3  1.0 
E 

Fig. 13. Dependence of +(e) on matrix geometry for several low-density foams (h /w  = 1).  

absorbing characteristics. Thus, the shape of the load-compression curve, 
which is expressed quantitatively in terms of #(c), can significantly influ- 
ence the performance characteristics of a foam structure. 

Figure 13 provides an additional comparison of the variation in #(e) 

which results from differences in matrix geometry and brittleness. Foams 
commonly are classified as “flexible” and ‘(rigid” (rigid denoting Eo > 
lo4 psi); but, since $(c) is dependent on the brittleness of the matrix, and 
not on the modulus Eo, it would be better to differentiate the compressive 
behavior as “flexible” and “brittle.” An ABS or polyethylene foam, for 
example, although rigid, exhibits a #(e) function which resembles a flexible 
rather than a brittle foam. 

CONCLUSIONS 

The compressive stress can be factored into the product of (1) a dimen- 
sionless function of the compressive strain, #(c), reflecting the buckling 
of the matrix, which describes the shape of the compression curve and (2) 
a factor eE,, where E,  is the apparent Young’s modulus, which expresses 
the stiffness of the foam. The # ( E )  functions were calculated from experi- 
mental compression data for several rigid (brittle and ductile) foams and 
compared to those previously calculated from data for flexible polyurethane 
foams with the following results: 

The brittleness of the foam matrix has a significant effect on #(e). 
Because a brittle matrix is broken rather than flexed during compression, 
a brittle foam exhibits a load-compression curve with a flatter and wider 
plateau than that displayed by a ductile foam of equivalent Young’s 
modulus, density, and matrix geometry. 

1. 
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2. It is important to distinguish between brittle foams (exhibiting 
glassy fracture) and “rigid” foams (exhibiting ductile fracture). Since 
both types appear equally stiff, this distinction, particularly important in 
structural or energy-absorbing applications, frequently is not considered 
when designing foam components. 

3. The critical features of $(e) are highly sensitive to the geometric 
structure and brittleness of the matrix, slightly dependent on foam density, 
cell size, bulk dimensions, and volume fraction of closed cells, and inde- 
pendent of the modulus of the matrix polymer. 
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